Near-field strong coupling of single quantum dots
نویسندگان
چکیده
Strong coupling and the resultant mixing of light and matter states is an important asset for future quantum technologies. We demonstrate deterministic room temperature strong coupling of a mesoscopic colloidal quantum dot to a plasmonic nanoresonator at the apex of a scanning probe. Enormous Rabi splittings of up to 110 meV are accomplished by nanometer-precise positioning of the quantum dot with respect to the nanoresonator probe. We find that, in addition to a small mode volume of the nanoresonator, collective coherent coupling of quantum dot band-edge states and near-field proximity interaction are vital ingredients for the realization of near-field strong coupling of mesoscopic quantum dots. The broadband nature of the interaction paves the road toward ultrafast coherent manipulation of the coupled quantum dot-plasmon system under ambient conditions.
منابع مشابه
Quantum theory of the plasmon enhanced Raman scattering effect in hybrid nanotube systems
The quantum theory of resonance Raman scattering is developed for a dipole emitter, the two-level system (TLS), coupled to an interband plasmon resonance of a carbon nanotube (CN) [1]. The model used belongs to a broad class of driven four-level quantum systems [2], with an important distinction that instead of being driven by an external periodic field, scattering by the interacting TLS-CN sys...
متن کاملAnti-Parallel Dipole Coupling of Quantum Dots via an Optical Near-Field Interaction
We observed the optically forbidden energy transfer between cubic CuCl quantum dots coupled via an optical near-field interaction using time-resolved near-field photoluminescence (PL) spectroscopy. The energy transfer time and exciton lifetime were estimated from the rise and decay times of the PL pump-probe signal, respectively. We found that the exciton lifetime increased as the energy transf...
متن کاملLateral Coupling of Self-assembled Quantum Dots Studied by Near-field Spectroscopy
Lateral coupling between separate quantum dots has been observed in a system of In0.55Al0.45As self-assembled quantum dots. The experiment was performed by taking photoluminescence excitation (PLE) spectra in the optical near-field at 4.2 K. The high spatial resolution afforded by the near-field technique allows us to resolve individual dots in a density regime where interactions between neighb...
متن کاملStrong optical field study of a single self-assembled quantum dot
We review the investigation of a single quantum dot driven by a strong optical field. By coherent pumpprobe spectroscopy, we demonstrate the Autler–Townes splitting and Mollow absorption spectrum in a single neutral quantum dot. Furthermore, we also show the typical Mollow absorption spectrum by driving a singly charged quantum dot in a strong optical coupling regime. Our results show all the t...
متن کاملControlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography.
Using far-field optical lithography, a single quantum dot is positioned within a pillar microcavity with a 50 nm accuracy. The lithography is performed in situ at 10 K while measuring the quantum dot emission. Deterministic spectral and spatial matching of the cavity-dot system is achieved in a single step process and evidenced by the observation of strong Purcell effect. Deterministic coupling...
متن کامل